Red Inteligente de Estaciones Terrenas - ADSGS

Autores/as

Jorge Enrique Espíndola Díaz
Universidad Pedagógica y Tecnológica de Colombia
https://orcid.org/0000-0003-4530-7383

Palabras clave:

Algoritmo Húngaro Adaptado, ADSGS, Radio Definido por Software, Redes de Estaciones Terrenas, Inteligencia Artificial, Expert SINTA

Sinopsis

Generalmente, el costo de las operaciones satelitales no es insignificante; especialmente para misiones de largo plazo. Una  alternativa para la reducción de costos es aumentar el nivel de automatización de los procedimientos, siempre y cuando esto  sea posible. Este libro propone un enfoque dinámico y autónomo de las redes de estaciones terrenas para el rastreo de  pequeños satelites, de tal manera que se minimicen estos costos operacionales. La solución planteada es ADSGS (Autonomous  and Dynamic System Ground Station) Sistema Autónomo y Dinámico para Estaciones Terrenas, que es un middleware  integrado con componentes de hardware y software para operar en un entorno de red distribuido en estaciones terrenas. Esta  investigación tiene en cuenta que la red SATNet, en la actualidad no tiene un componente de asignación con las características  de dinamismo y autonomía. Por el contrario, en ADSGS lo incorpora usando para esto Inteligencia Artificial a través de un  sistema experto basado en reglas. Esta propuesta plantea un agente de red ADSGS que opera de forma autónoma y dinámica la red Satnet donde se gestionan los componentes asociados a la estación. ADSGS usa una versión adaptada del algoritmo húngaro para la optimización combinatoria de problemas de asignación, el cual responde a eventos como la interrupción del servicio. Así también, el componente de hardware propuesto utiliza la tecnología COTS y Software Defined Radio (SDR),  mientras que el componente de software utiliza paquetes como Orbitron, ProEst, el sistema experto SINTA, entre otros. La  metodología responde a un estudio de caso que ilustra las principales características de ADSGS, este consiste en una pequeña  simulación en MATLAB con STK (Kit de herramientas de sistemas), dos escenarios de designación (1 a m y n a m) de estaciones  en la red Satnet a satélites mediadas por el agente ADSGS.  

Capítulos

  • Preliminares
  • CAPÍTULO 1.
    INTRODUCCIÓN
  • CAPÍTULO 2.
    REVISIÓN DEL ESTADO DEL ARTE
  • CAPÍTULO 3.
    ARQUITECTURA Y MODELADO DE ADSGS
  • CAPÍTULO 4.
    LA PROPUESTA DEL AGENTE ADSGS
  • CAPÍTULO 5.
    RESULTADOS DE ESTE CASO DE ESTUDIO
  • CAPÍTULO 6.
    TRABAJOS FUTUROS EN EL ÁREA Y CONCLUSIONES
  • APÉNDICE A.
    HARDWARE ADAPTADO TIPO ADSGS

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jorge Enrique Espíndola Díaz, Universidad Pedagógica y Tecnológica de Colombia

Con 17 años de experiencia en el desarrollo de estaciones terrenas para rastreo y control de satélites, el Ing. Jorge Enrique Espíndola Díaz, es Ingeniero de Sistemas de la Universidad EAN, profesor titular de la Escuela de Ingeniería de Sistemas y Computación de la UPTC seccional Sogamoso; Especialista en Telemática de la Universidad Autónoma de Colombia, con Maestría en Ciencias de la Información y las Comunicaciones de la Universidad Distrital; Doctor en Ciencias de Ingeniería y Tecnología Espacial del Instituto Nacional de Pesquisas Espaciales, INPE - Brasil; realizó su pasantía internacional en el Departamento de Ingeniería Mecánica de la Universidad Ben-Gurión del Néguev, en Beersheba, Israel.

En sus 23 años de labores la Universidad, se ha desempeñado como docente investigador, líder del grupo de investigación INFELCOM, investigador junior de Minciencias, director del Centro de Investigación y Extensión de la Facultad Seccional Sogamoso — CIFAS, así mismo se desempeñó como Decano de la Facultad y actualmente es editor de la revista Ingeniería, Investigación y Desarrollo, además, es miembro fundador del Comité Cientifico del Sector Aeroespacial para Colombia – COCSA, entre otros.

Referencias

Aguirre, M. (2012). Introduction to space systems: design and synthesis. Springer. https://doi.org/10.1007/9781461437581.

Air Fo. (2018). Air force satellite control network. Disponible en: http://www.afscn.com.

Airspy. (2018). SDR software package. Disponible en: http://airspy.com/

Alonso, G., Becerril, J. (1993). Introducción a la inteligencia artificial. Ed. Multimedia Ediciones S.A.

Amoozegar, F., Ruggier, C. (2003). Neural network based satellite tracking for deep space applications. Automatic Target Recognition XIII, pp. 119-135. SPIE 0277786X/03

Andre, D., Astro T. (1999). Evolving team Darwin United. In: Asada, M.; Kitano, H. (eds). RoboCup98: robot soccer world cup II. v. 1604, p. 346352. Lecture Notes in Computer Science.

AR2. (2016). High Performance 160 watt mast mounted amateur preamplifiers. Disponible en: http://www.advancedreceiver.com/page10.html.

Babuscia, A., Mccormack M., Munoz, M., Parra S., Miller D. (2012). Mit castor satellite: design, implementation, and testing of the communication system. Acta Astronáutica, v. 81, pp. 111-121. https://doi.org/10.1016.2012.07.005

Banzhaf, W., Reeves, C. (1999). Foundations of genetic algorithms 5. Morgan Kaufmann Publishers.

Bernard, J. (1988). Use of a rule based system for process control. IEEE Control Systems Magazine, v. 8, n. 5, p. 313.

Brown, D., Rothery, P. (1993). Models in biology: mathematics, statistics and computing. John Wiley & Sons.

Candini, G., Piergentili, F., Santoni, F. (2012). Miniaturized attitude control system for nanosatellites. Acta Astronáutica, v. 81, pp. 325-334. https://doi.org/10.1016/j.actaastro.2012.07.027

CCSDR. (2014). Simple schedule format specification. Draft Recommended Standard, Issuue 1. CCSDR 902.1R1.

Charitopoulos, I., Giannelos, I, Kosmas, E., Papadeas, D., Papadeas, P., Papamatthaiou, M., Roussos, N., Tsiligiannis, V., Zisimatos, A. (2015). SatNOGS: an open satellite ground station network. En: European Cubesat Symposium, 7. Athens, Greece. Proceedings… Athens: Libre Space Foundation. Disponible en: https://www.cubesatsymposium.eu/download/7ECS_agenda2.pdf

Chmyrev, V., Smith A., Kataria D., Nesterov B., Owen C., Sammonds P., Sorokin V., Vallianatos F. (2013). Detection and monitoring of earthquake precursors: TwinSat, a Russia–UK satellite project, Advances in Space Research, v. 52, pp. 1135-1145, https://doi.org/10.1016/j.asr.2013.06.017

Choi, J., Sanders, A. (2012). Cost Effective telemetry and command ground systems automation strategy for the soil moisture active passive (SMAP) mission. En: Spaceops 2012 Conference. https://doi.org/10.2514/6.20121275978

Clark, C. (2008). Software defined radio: with gnu radio USRP. McGrawHill Professional.

Cutler, J. (2004). Ground station markup language. In: IEEE Aeroespace Conference. Stanford. Proceedings Space System Development Laboratory, Stanford University.

Cutler, J. (2006). Ground station virtualization. NASA, Stanford University.

Cluter, J., Fox, A. (2006). A framework for robust and flexible ground station networks. Journal of Aerospace Computing, Information, and Communication, v. 3. Stanford University.

Cutler, J. (2004). Ground station virtualization. En: International Symposium on Reducing the Cost of Spacecraft Ground Systems and Operations (RCSGSO). Proceedings… Stanford University, Stanford.

Cutler, J., Kitts, C. (1999). Mercury: a satellite ground station control system. En: Aerospace Conference, Snowmass at Aspen. Proceedings… Piscataway. v. 2. pp. 51-58. https://doi.org/10.1109/AERO.1999.793142

Damiani, S., Dreihahn H., Noll, J., Niezette, M., Calzolari, G. (2006). Automated allocation of ESA ground station network services. American association for artificial intelligence.

Dascal, V., Dolea, P., Palade, T., Cristea, O. (2011). Aspects of a low cost ground station development for GENSO network. Acta Technica Napocensis Electronics and Telecommunications, v. 52, n. 4, p. 3640.

De Carvalho, M., Jotha, L., Lima, J., Biondi, R., Aquino, P., Lima, D. (2016). Estudo de estratégias de mitigação de detritos espaciais para uma constelação de nano satélites de coleta de dados ambientais. Natal: Instituto Nacional de Pesquisas Espaciais. Disponible en http://www.crn2.inpe.br/conasat1/Documentos/artigos/Artigo%20aceito%20no%2016th%20ISU%20Anual%20International%20Symposium%20em%202012%20(Equipe%20CONASAT).pdf

Dean, T., Allen, J., Aloimonos, Y. (1995). Artificial Intelligence theory and practice. Addison Wesley.

Dechao, R., Tao S., Lu, C., Xiaoqian, C., Yonk, Z. (2014). Attitude control system design and on orbit performance analysis of nanosatellite Tian Tuo 1. Chinese journal of aeronautics, v. 27, pp. 593-601. https://doi.org/10.1016/j.cja.2013.11.001

D'errico, M.(2012). Distributed space missionsforearthsystem monitoring. Springer Science & Business Media. p. 678. https://doi.org/10.1007/9781461445418 IAA – International Academy of Astronautics, Microcosm Press.

Devi, B., Williams, L. (2016). An architecture for AFSCN ground interface modernization. GSAW 2012. Disponible en: http://gsaw.org/wpcontent/uploads/2013/07/2012s01devi.pdf

Dussauze, J., Feltrin, G., Troillard, J. (2012). AstroTerra control ground segment: operations concept and implementation. En: Spaceops 2012 Conference, 2012. Sweden. Proceedings… Reston. https://doi.org/:10.2514/6.20121289133

Edlund, K., Green, M., Kragelund, M., Michelsen, A., Stougaard, R. (2004). Generic distributed mission control center for student satellites 2004, IEEE Aerospace Conference. Big Sky, MT, USA. Proceedins... IEEE, 2004. v. 22.

Espíndola J., Ferro R., Mesa J. (2013). Direccionamiento automático de antenas en estaciones terrenas de seguimiento a pico satélites. Revista Tecnura. Universidad Distrital. v. 17, n. 35, pp. 26-37.

Expert SINTA. Manual do usuário laboratório de inteligência artificial/LIAUFC. Projeto financiado pela CAPES e CNPq. 1996.

FAS. (2016). National security space road map. Air Force Satellite Control Network (AFSCN) (U). Disponible en: http://fas.org/spp/military/program/nssrm/categories/sfssoafs.htm

Fedor, J., Nishinaga R., Sunshine C., James P. (2016). Evolution of the air force satellite control network. Crosslink, v. 7, edition 1 (Spring 2006) Disponible en: http://aerospace.wpengine.netdnacdn.com/wpcontent/uploads/crosslink/V7N1.pdf

Fuller, R. (1995). Neural fuzzy systems. Abo Akademi University.

Garpestad, O. (2016). The IARU satellite frequency coordination 2015. The International Amateur Radio Union. Disponible en: http://www.itu.int/en/ITUR/space/workshops/2015praguesmallsat/Presentations/IARU%20Satellite%20coordination.pdf

GENSO. (2016). Project background. Disponible en: http://www.esa.int/Education/Project_background

Ginsberg, M. (1993). Essentials of Artificial Intelligence. Morgan Kaufmann Publishers, California.

Goldberg, D. (1989). Genetics algorithms in search, optimization and machine learning. Addison Wesley. Longman Publishing Co., Inc.

Griffith, R. (2011). Mobile CubeSat Command and Control (MC3). p. 76. Dissertation (Master in Space Systems Operations) Naval Postgraduate School.

GSN. (2016). GS management service manual (English version). GMS manual for GSN projects 2006/07/10 (Release). Disponible en: http://www.astro.mech.tohoku.ac.jp/~gsn/en/documents/gms7e_manual_060710.pdf

Harmon, P., King, D. (1988). Expert systems applications of artificial intelligence in business. Wiley.

HENRYRADIO. (2016). Tohtsu coaxial relays, CX600N. Disponible en: http://www.henryradio.com/tohtsu.html#cx600n

Hertz, J., Krogh, A., Palmer, R. (1991). Introduction to the theory of neural Computation. Addison – Wesley.

HUNGARIANALGORITHM.COM, The hungarian algorithm. Disponible en: http://www.hungarianalgorithm.com/index.php

ICOM. (2016). IC7100 HF/VHF/UHF transceiver. Disponible en: http://www.icomamerica.com/en/products/amateur/hf/7100/default.aspx

IEEE. (2016). STANDARS ASSOCIATION. IEEE 14712000. Practice for Architectural Description for Software Intensive Systems. Disponible en: http://standards.ieee.org/findstds/standard/14712000.html

INFORMATION TECHNOLOGY. (1994). Open Systems Interconnection Basic Reference Model: The Basic Model. International Standard, ISO/IEC 74981, 2nd ed., ISO.

INFORMATION TECHNOLOGY. (1994). Open Systems Interconnection Basic Reference Model: Conventions for the definition of OSI services. International Standard, ISO/IEC 10731:1994, ISO.

Inga, D., Velasquez I., Cachi D. (2011). Implementation of a small satellites automatic tracking system to reception and interpretation of beacon signals from cticuni’s ground station. Revista Eciperu, v. 8, pp. 87-91

Jaffer, G., Nader, R., Koudelka, O. (2011). Internet to orbit gateway and virtual ground station: a tool for space research and scientific outreach. Acta Astronáutica, v. 69, pp. 658-666. http://doi.org/10.1016/j.actaastro.201.05.021

Jet Propulsion Laboratory. (2016). Deep space network. California Institute of Technology. Disponible en: http://deepspace.jpl.nasa.gov/about/DSNComplexes/

Jet Propulsion Laboratory. (2016). Deep space network. California Institute of Technology. Disponible en: http://eyes.nasa.gov/dsn/dsn.html

Kalman, A. (2009). Pumpkin’s Colony I Cubesat bus: past, present and future. En: GAINSTAM Workshop.

Kontio, M. (2008). Architectural manifesto: designing software architectures, part 5.

Kruchten, P. (1995). Architectural Blueprints the “4+1” View Model of Software Architecture. IEEE Software, v.12, n. 6, pp. 42-50.

Kuhn, H. (1995). The Hungarian method for the assignment problem. Naval Research Logistics Quartely. v. 2, n. 1 y 2, pp. 83-97.

Lange, C., Foley, J. (2011). Ground station automation with APO and “GENSO” En: AIAA Plugnplay Mission Operations Workshop. Proceedings…IEEE.

Lannes, C., Pissias, P., Riccio F. (2012). A new generation of monitoring and control system for ESTRACK. En: Aerospace 2012 Conference, Sweden. Proceedings… AIAA, 2012. v. 3, pp. 1890-1897 https://doi.org/10.2514/6.20121286386

Le Cun, Y. (1985). Learning processes in an asymmetric threshold network. Disordered Systems and Biological Organization: disordered systems and biological organization proceedings of the NATO advanced research workshop. Springer.

Leffingwell, D., Managing, D. (2003). Software requirements: a use case approach. Publisher: Addison Wesley, p. 502.

Leveque, K., Puigsuari, J., Turner, C. (2007). Global educational network for satellite operations (GENSO). ssc07xi6. En: Annual AIAA/USU Conference on Small Satellite. Proceedings… California Polytechnic State University.

Liao, S. (2004). Expert system methodologies and applications a decade review from 1995 to 2004. Expert Systems with Applications, v. 28, pp. 93-103.

M2. (2016). Antenna systems, SATPACK #1 EB144/EB432/CROSSBOOM. Disponible en: https://www.m2inc.com/amateur/satpack1eb144eb432crossboom/

Machado, F. (2011). Analise e gestão de requisitos de software: onde nascem os sistemas. Editora Erica, p. 286.

Machado, R., Rocha, A. (1992). A hybrid architecture for fuzzy connectionist expert systems. En: Kandel, A, Langholz, G. (eds). Hybrid architectures for intelligent systems. Press Book.

Mcsush, J. (2016). SDR. et WF. Disponible en: Copyrighted free use https://commons.wikimedia.org/w/index.php?curid=8831874

MDT. (2016). Mercury Design Team. Mercury architecture description version 1.1, 2006. Stanford University. Disponible en: http://mgsn.sourceforge.net/docs/arch1.1.html

Melville, N. (2008). Global educational network for satellite operations: concept, progress and demonstration. Guildford: Surrey Space Center.

Melville, N. (2007). Global educational network for satellite operations. Hyderabad: International Space Education Board.

Mishkoff, H. (1988). In depth: artificial intelligence. Anaya.

Mitchell M. (1998). An introduction to genetic algorithms. MIT Press Cambridge.

Mitchell, T. (1997). Machine learning. McGrawHill.

Mu, Y., Hao, W., Changju, W., Chunchui, W., Licong, D., Yangming, Z., Zhonghe, J. (2011). Space flight validation of design and engineering of the ZDPS1A picosatellite. Chinese Journal of Aeronautics, v. 25, pp. 725-738. Melville. https://doi.org/10.1016/S1000936(11)604391

Müller, P., Doat, Y. (2012). Configuration management in a ground station network. En: SPACEOPS 2012 CONFERENCE. Sweden. Proceedings… AIAA. https://doi.org/10.2514/6.20121263858.2012

Muller, R, Vermillion C. (1987). A Ground Station for use with small satellites. En: Usu Conference on Small Satellites, v. 1. Proceedings… October 79.

Nakamura, Y., Nakasuka, S. (2006). Ground station network to improve operation efficiency of small satellites and its operation scheduling method. En: International astronautical congress 2006. Astrodynamics symposium (c1) mission operations (6), Proceedings… Tokyo: University of Tokyo, Japan.

NASA. (2014). Strategic Plan 2014. http://www.nasa.gov/sites/default/files/files/FY2014_NASA_SP_508c.pdf.

NASA. (2014). Small spacecraft technology state of the art. NASA Ames Research Center Moffett Field, p. 211.

Negnevitsky, M. (2011). Artificial Intelligence: a guide to intelligent systems. 3. ed. Addison Wesley.

Nikolopoulos, C. (1997). Expert systems: introduction to first and second generation and hybrid knowledge based systems. v. 1. p. 331. Taylor & Francis.

Nilsson, N. (2001). Inteligencia artificial: una nueva síntesis. McGrawHill.

Nonsoque, C. (2012). Montaje e implementación de una estación terrena para el seguimiento de satélites de órbita baja. p. 99. UPTC.

NUTAQ. (2016). A short history of software defined radio (SDR) technology. 2014 Disponible en: http://nutaq.com/en/blog/shorthistorysoftwaredefinedradiosdrtechnology

Oda, Y., Komatsu, M., Kurahara, N., Nakamura, Y., Sakamoto, Y., Nakasuka, S., Wickramanayake, A., Fernando, P. (2009). Improvement in university satellite operation using ground station network. Trans, JSASS Space Tech. Japan, v. 7, n. 26, p. 31.

Palazón A. (1991). Los sistemas expertos como ayuda a las empresas. Dirección y progreso, n. 119, pp. 22-24.

Parker, D. (1985). Learning Logic. Cambrigge, MA: MIT, Center for Computational Research in Economics and management Science.

Pelaez J., VELASCO J. (2016). Sistemas inteligentes. Disponible en: http://www.aic.uniovi.es/ssii

Poole, D., Mackworth, A., Goebel, R. (1998). Computational intelligence: a logical approach. Oxford University Press.

Preindl, B., Mehnen, L., Rattay, F., Nielsen, J., Krinninger, S., Sørensen, K. (2009). A global satellite link sensor network. En: IEEE Conference on Sensors, Christchurch. New Zealand. Proceedings… Institute of Analysis and Scientific Computing, Vienna University of Technology.

Preindl, B., Rattay M., Nielsen, J. (2009). Design of a small satellite for performing measurements in a ground station network. En: International Workshop on Satellite and Space Communications (IWSSC). Proceedings… Vienna Technical University, Austria and Aalborg University.

PROBECOM. (2016). Meter earth station antenna. Disponible en: http://www.probecom.cn/up_files/1.8m%20earth%20antenna%20datasheet.pdf

RADIXON GROUP. (2016). Software defined radio. Disponible en: http://www.winradio.com/home/facts.htm

Reed, J. (2002). Software radio: a modern approach to radio engineering. Prentice Hall.

RF HAMDESIGN. (2016). Type BIGRAS/HR azimuth & elevation rotor. Disponible en: http://www.rfhamdesign.com/products/spidhrantennarotators/bigrashr/index.php

Rodriguez, J. (2016). Processo de referência para o desenvolvimento da arquitetura de uma estação terrena para pico e nanosatélites. p. 235. INPE, Disponible en: http://urlib.net/8JMKD3MGP3W34P/3LDAGLL

Rose, C., Wirthlin, J. (2012). Using M&S to maximize space satellite data collection with multiple ground stations. Procedia Computer Science, v. 8, pp. 124-128. https//:doi.org/10.1016/jprocs.2012.01.024.

RTLSDR. (2016). About RTLSDR. Disponible en: http://www.rtlsdr.com/aboutrtlsdr/

Russell, S., Norvig, P. (2004). Inteligencia artificial. Un enfoque moderno. 2. ed. Prentice Hall Int.

Salehiabari, A., White, T. (2010). The impact of naive agents in heterogeneous trust aware societies. En: International Workshop on Multiagent Systems and Agentbased Simulation. Hungary.

Sandau, R. Status and trends of small satellite missions for earth observation, Acta Astronáutica, v. 66, p. 112, 2009. https://doi.org/10.1016/j.actaastro.209.06.008

SATNet. (2016). The SATNET network. Disponible en: https://satnet.aero.calpoly.edu/accounts/login/?next=/accounts/login_ok/

Schulz, D. (2010). Colony: a new business model for R&D. In: Annual AIAA/USU Conference on Small Satellites, p. 31. Proceedings... Utah State University.

SINTA. (1996). Expert SINTA – Uma ferramenta visual para criação de sistemas especialistas – Versão 1.1 – Manual do Usuário. – Laboratório de Inteligência Artificial/LIA UFC.

Sorensen, T., Pilguer, E., Wood, M., Gregory, E., Nunes, M. (2010). Development of the mission operations support tool (MOST) En: SPACEOPS 2010 Conference. https://doi.org/10.2514/6.20102230

Spires, D., Sturdevant, R. (1990). From advent to Milstar: The U.S. air force and the challenges of military satellite communications. En: NASA (ed.). SP4217 beyond de ionosphere. 1990. Chapter 7. Disponible en: http://history.nasa.gov/SP4217/ch7.htm

Springmann, J., Cutler, J., Bahcivan, H. (2011). Initial flight results of the radio aurora explorer. En: International Astronautical Congress. Proceedings… Cape Town, South Africa.

SSB. (2016). UEK3000 2.4GHz mode "S" down converter. Disponible en: http://www.ssbusa.com/modes.html

STOFF. (2016). Orbitron software. Disponible en: https://www.stoff.pl/

SUPERKUH. (2016). RTLSDR and GNU radio with realtek rtl2832u [elonics e4000/ raphael micro r820t] software defined radio receivers. Disponible en: http://superkuh.com/rtlsdr.html

Tominaga, J. (2010). Simulador de satélites para verificação de planos de operações em vôo. 2010. p. 174. INPE. Disponible en: http://urlib.net/8JMKD3MGP7W/37HL3J8

Tubio, R. (2016). User specification. SATNet Project 2013. Disponible en: https://github.com/satnetproject/documentation/blob/master/documentation/satnet1UserSpecificationDRAFT12013.10.11.pdf

Tubio, R., Vazquez, A., Puig, J., Kurahara, N., Bellardo, J. (2014). The SATNet project: towards an opensource ground stations network for CubeSats. Spring Cubesat Developers' Workshop 2014. Disponible en: http://mstl.atl.calpoly.edu/~bklofas/Presentations/DevelopersWorkshop2014/Tubio_SATNet.pdf

UZ7. (2017). UZ7HO. The software PacketRadio TNC. Disponible en: http://uz7.ho.ua/packetradio.htm

Vemon, M., Manber, U. (1988). Distributed round robin and first come first serve protocols and their application to multiprocessor bus arbitration. En: Annual International Symposium on Computer Architecture. Proceedings… Honolulu.

Wassermann, P. (1985). Neural computing: theory practice. v. 1. p. 230. Coriolis Group.

Wertz, J., Everett, D., Puschell, J. (2011). Space mission engineering the new smad. v. 28. Hawthorme, CA: Microcosm Press.

White, D., Giannelos, I., Zissimatos, A., Kosmas, E., Papadeas, D., Papadeas, P., Papamathaiou, M., Roussos, N., Tsiligiannis, V., Charitopoulos, I. (2015). SATnogs: satellite networked open ground station. Engineering Faculty Publications. Paper 40. Disponible en: https://scholar.valpo.edu/engineering_fac_pub/40

WIF. (2016). Wireless Innovation Forum. What is software defined radio. Disponible en: https://www.wirelessinnovation.org/Introduction_to_SDR

Woellert, K., Ehrenfreund, P., Ricco, A., Hertzfeld, H. (2010). Cubesats: costeffective science and technology platforms for emerging and developing nations. Advances in Space Research, v. 47, pp. 663-684. https://doi.org/10.1016/j.asr.2010.10.009

Xhafa, F., Herrero, X., Barolli, A., Barolli, L., Takizawa, M. (2013). Evaluation of struggle strategy in genetic algorithms for ground stations scheduling problem. Journal of computer and system sciences, v. 79, pp. 1086-1100. https://doi.org/10.1016/j.jcss.2013.01.023

YAESU. (2016). G5500 - Complete Azel Rotation System. Disponible en: http://www.yaesu.com/indexVS

Descargas

Publicado

20 December 2023

Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Detalles sobre esta monografía

ISBN-13 (15)

978-958-660-809-1